Subunit contributions to insect olfactory receptor function: channel block and odorant recognition.
نویسندگان
چکیده
Insect olfactory receptors are heteromeric ligand-gated ion channels composed of at least one common subunit (Orco) and at least one subunit that confers odorant specificity. Little is known about how individual subunits contribute to the structure and function of the olfactory receptor complex. We expressed insect olfactory receptors in Xenopus oocytes to investigate 2 functional features, ion channel block and odorant recognition. The sensitivity of Drosophila olfactory receptors to inhibition by ruthenium red, a cation channel blocker, varied widely when different specificity subunits were present, suggesting that the specificity subunits contribute to the structure of the ion pore. Olfactory receptors formed by Dmel\Or35a and Orco subunits from several different species displayed highly similar odorant response profiles, suggesting that the Orco subunit does not contribute to the structure of the odorant-binding site. We further explored odorant recognition by conducting a detailed examination of the odorant specificity Dmel\Or67a + Dmel\Orco, a receptor that responds to aromatic structures. This screen identified agonists, partial agonists, and an antagonist of Dmel\Or67a + Dmel\Orco. Our findings favor specific subunit arrangements within the olfactory receptor complex and provide a preliminary odorophore for an olfactory receptor, offering a useful foundation for future exploration of insect olfactory receptor structure.
منابع مشابه
Heteromeric Anopheline Odorant Receptors Exhibit Distinct Channel Properties
BACKGROUND Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largely focused only on odorant recognition. RESULTS To investigate other roles of odorant-binding ORs, we have employed ...
متن کاملCentral role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation.
Heteromultimeric cyclic nucleotide-gated (CNG) channels play a central role in the transduction of odorant signals and subsequent adaptation. The contributions of individual subunits to native channel function in olfactory receptor neurons remain unclear. Here, we show that the targeted deletion of the mouse CNGA4 gene, which encodes a modulatory CNG subunit, results in a defect in odorant-depe...
متن کاملTrace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit
Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control. Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry. Synthetic Orco di...
متن کاملInhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit
Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR) family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco) subunit,...
متن کاملIdentification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit
BACKGROUND Insects detect attractive and aversive chemicals using several families of chemosensory receptors, including the OR family of olfactory receptors, making these receptors appealing targets for the control of insects. Insect ORs are odorant-gated ion channels, comprised of at least one common subunit (the odorant receptor co-receptor subunit, Orco) and at least one variable odorant spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical senses
دوره 36 9 شماره
صفحات -
تاریخ انتشار 2011